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SUMMARY 
The velocity correction algorithm is used in the finite element method to solve forced convection problems 
between parallel plates with a triangular step, for Reynolds numbers up to 1OOO. Equal-order interpolation 
functions for velocity, pressure and temperature are used. The solutions show a smooth variation of pressure. 
The streamfunction, isotherms, isobars and velocity profiles are presented for a typical Reynolds number of 
500. The skin friction and heat transfer results are presented for Reynolds numbers up to IOOO. 

KEY WORDS Laminar flow Triangular step FEM Velocity correction 

INTRODUCTION 

The study of laminar flow through constrictions and of flow over steps of different shapes in 
conduits is of relevance in the field of heat exchanger design, where the pressure drop and heat 
transfer performance are important. Different kinds of obstructions on the surfaces may occur as a 
result of imperfect manufacturing processes used in making conduits. Obstructions may also be 
introduced deliberately in order to produce turbulence in the flow. The study of the behaviour of 
such obstructions in flows will be of help in judging the performance of equipment of which they 
form a part. 

Laminar flow is also encountered in the flow of biological fluids, such as blood through veins. 
The obstructions encountered in such flows are of complex shape. The shape can be idealized to a 
known, simple shape and the effect of it on blood pressure and flow can be studied. 

The parallel plate duct geometry is a limiting geometry for the family of rectangular ducts and 
also for concentric annular ducts. Detailed analytical results for laminar flow and heat transfer for 
parallel plates have h e n  given by Shah and London.' Flow through constrictions in a parallel 
channel was studied by WeisbachZ and Kays3 Their studies were of an analytical nature. Kays 
presented semi-empirical relations for expansion and contraction coefficients. Bunditkul,". ' 
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Greenspan6 and Friedman7 conducted numerical studies of flow through long rectangular 
constrictions by the finite difference method. Banditku14* reported that the heat transfer and 
pressure drop were significantly enhanced. Hughes' solved the problem of flow over short square 
steps up to a Reynolds number of 200 by an upwind finite element method. Gresho' and 
Gartling" contested the use of upwinding and Gresho' presented results for flow over a square 
step up to a Reynolds number of 200 without upwinding. The major problems that are 
encountered in solving steady or unsteady Navier-Stokes equations are: 

(i) the treatment of the incompressibility constraint 
(ii) the treatment of convective terms. 

Schneider et al.," Gresho? Reddy," Hughes,8 Spalding,13 G~dbo le , ' ~  Heinrich15 and Gartling'O 
suggested methods to overcome these problems. The results were reported only up to a Reynolds 
number of 200 for flow over a square step. Donea16 used a fractional step method in a finite 
element context. He has presented results for a similar square step problem up to a Reynolds 
number of 200 using the velocity correction method. The velocity correction method does not pose 
any problems in the treatment of the continuity equation and convective terms. The interpolations 
of pressure and velocities can be of equal order, unlike the unequal interpolation suggested in 
some of the references above. It does not require any upwinding. Moreover, it does not produce 
any spurious oscillations in pressure as reported by Gresho.I7 The references cited above deal only 
with problem of flow over a square step up to a Reynolds number of 200. Nothing has been stated 
about heat transfer except by B u n d i t k ~ l . ~ ~  

The present paper is devoted to the application of the velocity correction method to convective 
heat transfer problems in parallel channels with and without a step of triangular shape. The flow 
and heat transfer results are presented up to a Reynolds number of 1OOO. The velocity correction 
method used for analysis is presented in a simple form below. 

ANALYSIS 

The equations governing the unsteady, incompressible, viscous two-dimensional flow with energy 
can be represented in non-dimensional form as 

where the non-dimensional quantities are represented by 

Equations ( laHld)  can be solved simultaneously for a coupled problem. Equations (laHlc) 
are solved to get the velocities and pressure in an uncoupled problem. The temperatures are 
evaluated from (Id) by substitution of the calculated velocities. 
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U,, V,, P,, 8, and U,, 1, V ,  + 1, P, + 6, + are assumed to be the values of the variables at time z,, 
and z,+ respectively. Let a set of fictitious values of velocities u,, _V, satisfy the equations 

( U ,  - U,)/Az =(2/Re)a2U,/aX2 + (i/Re)a(aU,/aY+ aV,/aX)/aY, (2a) 

(Y,- V,)/At=(l/Re)a(aU,/aY+ aV,/aX)/aX+(2/Re)a2Vn/aY2. (2b) 

The velocities u,, _V, will not satisfy the continuity equation (lc). Let the equations 

(u,+ - u,)/Az= -dP/dX+(2/Re)au~/ax2 +(l/Re)d(aU,/dY+aVJax)/aY, (3a) 

(V,+ - Vn)/A7 = - dP/d Y+ (l/Re)a(aU/a Y+ a V/aX)/aX +(2/Re)az VJd Y 2  (3b) 

be satisfied at the end of time T,+~. By rearrangement of equations (2) and (3), the following 
simpler equations are obtained: 

un+ 1 = Un-dPn+ JdX, 

v n  + 1 = Y n  -dPn + l/d Y. 

(44 

(4b) 

The velocities U, + and V,  + have to satisfy the continuity equation (lc) for them to be the actual 
velocities at the time 7,+ 1. Hence, by taking appropriate derivatives of the equations (4a) and (4b) 
and substituting in equation (ic), the following Poisson equation in pressure is obtained: 

d2P,+ JdX2 +d2P,+l/dYZ =dU,/dX+dY,,/dY. (5 )  

The pressure distribution Pn+l can be obtained if the values of u, and Yn are known. The 
algorithm to arrive at the final quantities at time z,+ is as follows. 

(i) The values U,, V,, P,, and 6, are assumed to be known at time T,. 
(ii) The fictitious values u, and _V, are evaluated from (2). 
(iii) The pressure P,+ is evaluated from (5 )  by substituting the known values of U_,  and l!,. 
(iv) The solution of P,+ is substituted in equation (4) to obtain the final values of U,+ and 

(v) The values of U,+ and V,, are substituted in the equation 
Vn+,. 

(6, + - ~ , ) / A z  = - u, + ae,/ax - v, + ae,/a Y+ (1/Re pr)(a26,/ax2 + az6,/a r2),  (6) 

which is obtained by explicit Euler time splitting of equation (Id). The temperature 6, from 
the previous iteration is assumed to be known. 

The solution domain is discretized into a finite number of elements. The same grid is used for the 
solution in all of the steps described above. In the present work the domain is divided into a 
number of linear triangles. The variations of velocities, pressure and temperature are assumed to 
be linear: 

u = Ni ui + Nj uj + N k  u,, (74  

All the variables are interpolated to equal order. Since linear elements are used, the numerical 
integrations involved in the evaluation of element matrices are avoided. 
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N b'MERICA1, EXAMPLES 

'The following problems are solved to illustrate the capability of the method: 

(i) flow through a channel with a backward step 
(ii) the temperature development in flow between parallel plates, with the flow fully developed 
(iii) the problem of flow over a triangular step; the results of the flow, friction factor and heat 

transfer are presented as additional results, and the flow is assumed to be developed at the 
entrance. 

In all the examples described below, the fluid is assumed to be initially at rest with the 
temperature throughout the domain equal to the entry temperature. The boundary conditions are 
applied to the fluid at rest and the developments are studied as a transient problem. The solution is 
assumed to be converged if the change in non-dimensional values of all the variables is below 
O.oooO1. The steady state solutions are used to evaluate the performance parameters such as the 
friction factor, Nusselt number, etc. The Nusselt number N u  and friction factor F are evaluated 
from the following equations:' 

(local) 

(average) 

(local) 

(average) 

Nu,=(d8/dY)/(OW-8,), 

N U ,  =( 1/X) Nu,dX, loX 
F ,  = 2(dU/d Y)/Re, 

8,=(l/D) loD 8dY. 

All quantities referred to in the present paper are non-dimensional. 

(i) Flow ihrough parallel channel with backward step 

This particular problem is chosen for the purpose of comparison. The problem statement is 
given in Figure l(a). The problem is solved for a Reynolds number of 60. The results for the 
streamfunction and isobars are plotted in Figure 2. The pressure variation along the bottom 
wall agrees with the results of Lee,'* as shown in Figure 2(c). The pressure contours shown in 
Figure 2(b) are smooth without any wiggles. Hence the results of flow over a backward step 
suggest that the present method could be used to simulate recirculatory flows. 

Number of elements = 800 Number of nodes = 441 

u = v = o  (6 ) 
(2.2), 

u = v = o  
v=o i?;;;;i (2J) 

dU/dX = 0 
w/ax =o - 

cop) u= v=o  (6,O) 
( 0 )  

Figure l(a). Problem of flow over a backward step 
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Number of elements = 480 Number of nodes = 275 

v = o;du/aY = ~ ~ d f f i a ~  = 0 
0.5 

a u i a x  = o 
a v i a x  = o 
a e i a x  = o 

P = O  

00  u=v=oi 8.1 400 
( b )  

Figure l(b). Problem of thermal development between parallel plates 

The step located at o distonce of X = 1 

Number of elements = 1096 Number of nodes = 612 

v=o ;au /aY=o ;de /aY=  o 
a u i a x  =o 
a v i a x  =o 
a e i a x  =o 

P =o 

0.0 U=V=0 ,8=1  400 

(C)  

Figure l(c). Problem of flow over a triangular step 

( 0 )  

Figure 2(a). Streamlines for flow over a backward step Figure 2(b). Isobar plot for flow over a backward step 

Lee’s result 

x Present result 

---- 0.194 

00 6.0 
( C )  

Figure Yc). Bottom wall pressure variation for flow over a backward step 
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( i i )  Thermal development in p o w  between parallel plates 

The problem statement is given in Figure I(b). The problem is the original Graetz problem of 
thermal development with the velocity profile developed. The flow is allowed to develop from rest 
and initial temperature equal to inlet temperature. The walls are maintained at a constant 
temperature. Since the flow is symmetric, one half of the domain is taken for solution. The region 
is divided into 480 elements having 275 nodes. The Nusselt numbers are calculated from equa- 
tions (8). The Nusselt numbers evaluated from the calculated values of velocities and temperature 
agree with the results reported by Shah.' The results are tabulated for comparison in Table I. 

The solution of cases (i) and (ii) shows that the present method can be used for the analysis of 
forced convection problems. 

Table I. Mean Nusselt number comparison for 
thermal development between parallel plates 

X* 

0.003 
0.004 
0.005 
0.010 
0.01 5 
0.020 
0.030 
0.040 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 
0.200 

Present method Shah' 

13.194 
12.195 
1 1.494 
9.923 
9.185 
8.787 
8.375 
8.166 
8.043 
7.962 
7.90 1 
7.855 
7.8 19 
7.793 
7.669 

13.420 
12.248 
11.413 
9.89 1 
9.107 
8.7 16 
8.324 
8.128 
8.01 1 
7.933 

7.835 

7.776 
7658 

7.877 

7.807 

R.500 
I 4 

Figure Xa). Streamlines for flow over a triangular step 

Figure 3(b). Velocity profiles for flow over a triangular step 
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Figure 3(c). Isobar plot for flow over a triangular step 
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(d)  

Figure 3(d). Isotherm plot for flow over a triangular step 
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Figure qb). Mean Nusselt number variation along the 
length 
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Figure qc). Mean and local Nusselt number variation along the length 

(iii) Flow over a triangular step 

The statement of the problem is given in Figure l(c). The present paper is devoted to the study of 
a triangular step which is shorter in length and height than the duct spacing. This is closer to the 
study of surface roughness effects on the flow and thermal characteristics of ducts. 

In the present paper a triangular step of height 0.1 times the duct spacing and base width 0.1 
times the duct spacing is considered. The step is located at a distance of one duct width from the 
entrance. The problem is solved for the Reynolds numbers 50, 100, 200, 500 and 1OOO. The 
streamfunction, isobars, isotherms and velocity profiles at different locations along the flow length 
are shown for a Reynolds number of 500 in Figure 3. The recirculation is smoothly predicted by 
the present method. The isobar plot does not show any wiggles as reported by previous 
researchers. The Nusselt numbers and friction factors are evaluated from equations (8). The 
thermal and flow performances are compared with the simple parallel plate results. The overall 
pressure drop shows an increase, whereas the mean Nusselt number is less than that of the parallel 
plates. The mean Nusselt numbers (Nu,) along the length for various Reynolds numbers are 
plotted in Figure 4. The simple parallel plate solutions are also plotted as broken lines for 
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comparison. The general characteristics of the variation can be described as follows. The Nusselt 
number for the step is greater than for the parallel plates up to the beginning of the step. It falls 
below the parallel plate value and remains lower up to a distance of X =  10. It approaches the 
parallel plate value at a large distance from the entrance. The reduction in Nusselt number 
increases with increasing Reynolds number. The reason for this is evident from the isotherm plot 
given in Figure 3(d). In the entrance region the isotherms are closer to the wall. The clustering of 
isotherms accounts for the high temperature derivative (high flux); hence the Nusselt number is 
higher near the entrance. As the flow proceeds towards the step, the isotherms climb towards the 
top of the step, moving away from the wall. The temperature derivative falls as the flow 
approaches the step; hence the local Nusselt number decreases, as shown in Figure 4(c). This fall in 
local Nusselt number reduces the average Nusselt number. The isotherms converge on top of the 
step. Hence the local Nusselt number shows an abrupt increase (Figure qc)). The isotherms again 
become detached from the wall after the step. The decrease in the temperature derivative (flux) 
after the step has the adverse effect of reducing the average Nusselt number below the parallel 
plate value. The average Nusselt number can be maintained higher than the parallel plate value for 
a considerable distance away from the step if the sudden detachment of the isotherms from the 
wall can be avoided. 

10 
R =  50 
Triangular step 

I 

10 20 30 40 50 60 70 80 90 1( 
R= 100 
Triongu lor step 

10 

0.5 i 
Ick 0.0 . L 
-0.5 ' 

10 20 30 4.0 5.0 6.0 70 80 9.0 1 
X 

Figure 5(a). Local skin friction variation along the length 
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Figure 5(b). Local skin friction variation along the length 
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Figure 5(c). Local skin friction variation along the length 
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Figure 6. Pressure variation along the centreline for flow over a square step 

The skin friction factor variation along the length is shown in Figure 5. The recirculation region 
is clearly evident from the change in the sign of the friction factor. The total pressure drop for the 
flow over the step is more than for the parallel plates. Plots of the centreline pressure variation for 
different Reynolds numbers are given in Figure 6. The presence of the step increases the pressure 
drop near the step. This is evident from the sudden drop in pressure near the step zone in Figure 6. 
The effect of the step on the pressure drop increases with increasing Reynolds number. 

CONCLUSIONS 

The application of the velocity correction method to forced convection problems is demonstrated 
with examples. The method is capable of producing wiggle-free solutions for forced convection 
problems. Upwinding is totally avoided in the present method. The velocities and pressure are 
interpolated to equal order. The problem of flow over a triangular step of dimensions shorter than 
the duct width is solved. The flow and thermal results are presented in terms of Nusselt numbers 
and friction factors which are relevant to heat exchanger design. 

APPENDIX: NOMENCLATURE 

C 
D 
F 
k 
N 
N u  
P 
P 
Pr 
Re 
t 
T 

heat capacity 
duct spacing 
friction factor 
conductivity 
shape functions 
Nusselt number 
dimensional pressure 
non-dimensional pressure 
Prandtl number 
Reynolds number 
dimensional time 
dimensional temperature 
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U 
U 

V 

X 
X *  
Y 
Y 

U 

X 

dimensional x-component velocity 
non-dimensional x-component velocity 
dimensional y-component velocity 
non-dimensional y-component velocity 
dimensional distance in x-direction 
non-dimensional distance in x-direction 
non-dimensional distance, X *  = X / 4 R e  
dimensional distance in y-direction 
non-dimensional distance in y-direction 

Subscripts 

e entry values 
0 exit values 
m mean values 
W refers to wall 
n 
X local values 

refers to quantities at time t ,  

Greek symbols 

z non-dimensional time 
0 non-dimensional temperature 
c1 kinematic viscosity 
P density 
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